

# Safety Data Sheet

Copyright, 2022, 3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

**Document group:** 41-7746-5 **Version number:** 2.00

**Issue Date:** 19/05/2022 **Supersedes date:** 13/12/2020

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

## **IDENTIFICATION:**

#### 1.1. Product identifier

3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Refill Kit A1, A3O, TR (56972, 56971, 56973)

**Product Identification Numbers** 

UU-0109-0317-5 UU-0109-0318-3 UU-0109-0319-1

#### 1.2. Recommended use and restrictions on use

#### Recommended use

Dental Product, Dental Cement

#### Restrictions on use

For use only by dental professionals in approved indications.

#### 1.3. Supplier's details

Address: 3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113

**Telephone:** 136 136

E Mail: productinfo.au@mmm.com

Website: www.3m.com.au

#### 1.4. Emergency telephone number

Company Emergency Hotline: EMERGENCY: 1800 097 146 (Australia only)

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet for each of these components is included. Please do not separate the component Safety Data Sheets from this cover page. The document numbers of the SDSs for components of this product are:

41-5463-9, 41-5399-5

One or more components of this KIT is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

## TRANSPORT INFORMATION

This KIT and its components are NOT classified as Dangerous Goods.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au



# Safety Data Sheet

Copyright, 2022, 3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

**Document group:** 41-5463-9 **Version number:** 2.00

**Issue Date:** 19/05/2022 **Supersedes date:** 13/12/2020

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

## **SECTION 1: Identification**

#### 1.1. Product identifier

3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Base Paste

#### 1.2. Recommended use and restrictions on use

#### Recommended use

Dental Product, Dental Cement

#### Restrictions on use

For use only by dental professionals in approved indications.

#### 1.3. Supplier's details

Address: 3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113

**Telephone:** 136 136

E Mail: productinfo.au@mmm.com

Website: www.3m.com.au

## 1.4. Emergency telephone number

EMERGENCY: 1800 097 146 (Australia only)

## **SECTION 2: Hazard identification**

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

### 2.1. Classification of the substance or mixture

Skin Corrosion/Irritation: Category 2. Serious Eye Damage/Irritation: Category 1.

Skin Sensitizer: Category 1.

#### 2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

### Signal word

Danger

#### **Symbols**

Corrosion |Exclamation mark |

**Pictograms** 



#### **Hazard statements**

H315 Causes skin irritation. H318 Causes serious eye damage.

H317 May cause an allergic skin reaction.

## **Precautionary statements**

**Prevention:** 

P261 Avoid breathing dust/fume/gas/mist/vapours/spray.

P264 Wash thoroughly after handling.

P272 Contaminated work clothing should not be allowed out of the workplace.

P280A Wear eye/face protection.

**Response:** 

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P310 Immediately call a POISON CENTRE or doctor/physician.
P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.
P362 + P364 Take off contaminated clothing and wash it before reuse.

Disposal:

P501 Dispose of contents/container in accordance with applicable

local/regional/national/international regulations.

## 2.3. Other assigned/identified product hazards

None known.

## 2.4. Other hazards which do not result in classification

Harmful to aquatic life with long lasting effects.

# **SECTION 3: Composition/information on ingredients**

This material is a mixture.

| Ingredient                                 | CAS Nbr     | % by Weight   |
|--------------------------------------------|-------------|---------------|
| Triethylene glycol dimethacrylate          | 109-16-0    | 26.72 - 30.52 |
| 2-Propenoic acid, 2-methyl-, 3-            | 122334-95-6 | 23.84 - 27.9  |
| (trimethoxysilyl)propyl ester, reaction    |             |               |
| products with vitreous silica              |             |               |
| 7,7,9(or 7,9,9)-Trimethyl-4,13-dioxo-3,14- | 72869-86-4  | 24.22 - 27.5  |

| dioxa-5,12-diazahexadecane-1,16-diyl<br>bismethacrylate |              |             |
|---------------------------------------------------------|--------------|-------------|
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-                   | 1224866-76-5 | 8.14 - 9.18 |
| (hydroxymethyl)-1,2-ethanediyl] ester,                  |              |             |
| reaction products with 2-hydroxy-1,3-                   |              |             |
| propanediyl dimethacrylate and phosphorus               |              |             |
| oxide                                                   |              |             |
| Silane, trimethoxyoctyl-, hydrolysis                    | 92797-60-9   | 4.99 - 8.5  |
| products with silica                                    |              |             |
| t-Amyl Hydroperoxide                                    | 3425-61-4    | 1.4 - 2.34  |
| 2,6-Di-tert-butyl-p-cresol                              | 128-37-0     | 0.41 - 0.56 |
| 2-hydroxyethyl methacrylate                             | 868-77-9     | <= 0.3      |
| Methyl Methacrylate                                     | 80-62-6      | <= 0.3      |
| Acetic acid, copper(2+) salt, monohydrate               | 6046-93-1    | <= 0.02     |

## **SECTION 4: First aid measures**

#### 4.1. Description of first aid measures

#### Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

#### Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

#### Eve contact

Immediately flush with large amounts of water for at least 15 minutes. Remove contact lenses if easy to do. Continue rinsing. Immediately get medical attention.

#### If swallowed

Rinse mouth. If you feel unwell, get medical attention.

### 4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching). Serious damage to the eyes (corneal cloudiness, severe pain, tearing, ulcerations, and significantly impaired or loss of vision).

#### 4.3. Indication of any immediate medical attention and special treatment required

Not applicable

# **SECTION 5: Fire-fighting measures**

### 5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

## 5.2. Special hazards arising from the substance or mixture

None inherent in this product.

## **Hazardous Decomposition or By-Products**

SubstanceConditionCarbon monoxide.During combustion.Carbon dioxide.During combustion.Irritant vapours or gases.During combustion.

### 5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus,

\_\_\_\_\_

bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

## **SECTION 6: Accidental release measures**

### 6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

### 6.2. Environmental precautions

Avoid release to the environment.

#### 6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

# **SECTION 7: Handling and storage**

#### 7.1. Precautions for safe handling

A no-touch technique is recommended. If skin contact occurs, wash skin with soap and water. Acrylates may penetrate commonly-used gloves. If product contacts glove, remove and discard glove, wash hands immediately with soap and water and then re-glove. Avoid breathing dust/fume/gas/mist/vapours/spray. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Do not get in eyes.

### 7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from oxidising agents.

# **SECTION 8: Exposure controls/personal protection**

## 8.1 Control parameters

#### Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

| Ingredient                 | CAS Nbr   | Agency         | Limit type                 | Additional comments     |
|----------------------------|-----------|----------------|----------------------------|-------------------------|
| 2,6-Di-tert-butyl-p-cresol | 128-37-0  | ACGIH          | TWA(inhalable fraction and | A4: Not class. as human |
|                            |           |                | vapour):2 mg/m3            | carcin                  |
| 2,6-Di-tert-butyl-p-cresol | 128-37-0  | Australia OELs | TWA(8 hours):10 mg/m3      |                         |
| COPPER COMPOUNDS           | 6046-93-1 | ACGIH          | TWA(as Cu, fume):0.2       |                         |
|                            |           |                | mg/m3;TWA(as Cu dust or    |                         |
|                            |           |                | mist):1 mg/m3              |                         |
| Methyl Methacrylate        | 80-62-6   | ACGIH          | TWA:50 ppm;STEL:100 ppm    | A4: Not class. as human |
|                            |           |                |                            | carcin, Dermal          |
|                            |           |                |                            | Sensitizer              |
| Methyl Methacrylate        | 80-62-6   | Australia OELs | TWA(8 hours):208 mg/m3(50  | SKIN                    |
|                            |           |                | ppm);STEL(15 minutes):416  |                         |
|                            |           |                | mg/m3(100 ppm)             |                         |

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

Australia OELs : Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment

CMRG: Chemical Manufacturer's Recommended Guidelines

TWA: Time-Weighted-Average

## 3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Base Paste

STEL: Short Term Exposure Limit

CEIL: Ceiling Sen: Sensitiser

Sk: Absorption through the skin may be a significant source of exposure.

#### 8.2. Exposure controls

#### 8.2.1. Engineering controls

Use in a well-ventilated area.

## 8.2.2. Personal protective equipment (PPE)

## Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

## Skin/hand protection

See Section 7.1 for additional information on skin protection.

## **Respiratory protection**

None required.

# **SECTION 9: Physical and chemical properties**

9.1. Information on basic physical and chemical properties

| Physical state                                    | Solid.                              |  |
|---------------------------------------------------|-------------------------------------|--|
| Specific Physical Form:                           | Paste                               |  |
|                                                   |                                     |  |
| Colour                                            | White                               |  |
| Odour                                             | Slight Acrylic                      |  |
| Odour threshold                                   | No data available.                  |  |
| рН                                                | Not applicable.                     |  |
| Melting point/Freezing point                      | Not applicable.                     |  |
| Boiling point/Initial boiling point/Boiling range | Not applicable.                     |  |
| Flash point                                       | Flash point > 93 °C (200 °F)        |  |
| Evaporation rate                                  | No data available.                  |  |
| Flammability (solid, gas)                         | Not classified                      |  |
| Flammable Limits(LEL)                             | No data available.                  |  |
| Flammable Limits(UEL)                             | No data available.                  |  |
| Vapour pressure                                   | No data available.                  |  |
| Vapor Density and/or Relative Vapor Density       | No data available.                  |  |
| Density                                           | Approximately - 2 g/cm3             |  |
| Relative density                                  | Approximately - 2 [Ref Std:WATER=1] |  |
| Water solubility                                  | Negligible                          |  |
| Solubility- non-water                             | No data available.                  |  |
| Partition coefficient: n-octanol/water            | No data available.                  |  |
| Autoignition temperature                          | No data available.                  |  |
| Decomposition temperature                         | No data available.                  |  |
| Viscosity/Kinematic Viscosity                     | 10 Pa-s - 100 Pa-s                  |  |
| Volatile organic compounds (VOC)                  | No data available.                  |  |

| Percent volatile               | No data available. |
|--------------------------------|--------------------|
| VOC less H2O & exempt solvents | No data available. |

# **SECTION 10: Stability and reactivity**

### 10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

#### 10.2 Chemical stability

Stable.

#### 10.3. Conditions to avoid

Heat.

#### 10.4. Possibility of hazardous reactions

Hazardous polymerisation will not occur.

#### 10.5 Incompatible materials

Strong oxidising agents.

#### 10.6 Hazardous decomposition products

**Substance** 

**Condition** 

None known.

# **SECTION 11: Toxicological information**

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

#### 11.1 Information on Toxicological effects

## Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

#### Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

## Skin contact

Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

## Eye contact

Corrosive (eye burns): Signs/symptoms may include cloudy appearance of the cornea, chemical burns, severe pain, tearing, ulcerations, significantly impaired vision or complete loss of vision.

#### Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

## **Toxicological Data**

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

**Acute Toxicity** 

| Name                                                                                                                                                             | Route                          | Species                | Value                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|------------------------------------------------|
| Overall product                                                                                                                                                  | Dermal                         |                        | No data available; calculated ATE >5,000 mg/kg |
| Overall product                                                                                                                                                  | Inhalation-Vapour(4 hr)        |                        | No data available; calculated ATE >50 mg/l     |
| Overall product                                                                                                                                                  | Ingestion                      |                        | No data available; calculated ATE >5,000 mg/kg |
| Triethylene glycol dimethacrylate                                                                                                                                | Dermal                         | Professional judgement | LD50 estimated to be > 5,000 mg/kg             |
| Triethylene glycol dimethacrylate                                                                                                                                | Ingestion                      | Rat                    | LD50 10,837 mg/kg                              |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester,<br>reaction products with vitreous silica                                                      | Dermal                         | Rabbit                 | LD50 > 5,000 mg/kg                             |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester,<br>reaction products with vitreous silica                                                      | Inhalation-Dust/Mist (4 hours) | Rat                    | LC50 > 0.691 mg/l                              |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester,<br>reaction products with vitreous silica                                                      | Ingestion                      | Rat                    | LD50 > 5,110 mg/kg                             |
| 7,7,9(or 7,9,9)-Trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate                                                                   | Dermal                         | Professional judgement | LD50 estimated to be > 5,000 mg/kg             |
| 7,7,9(or 7,9,9)-Trimethyl-4,13-dioxo-<br>3,14-dioxa-5,12-diazahexadecane-<br>1,16-diyl bismethacrylate                                                           | Ingestion                      | Rat                    | LD50 > 5,000 mg/kg                             |
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-(hydroxymethyl)-1,2-ethanediyl] ester, reaction products with 2-hydroxy-1,3-propanediyl dimethacrylate and phosphorus oxide | Dermal                         |                        | LD50 estimated to be > 5,000 mg/kg             |
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-(hydroxymethyl)-1,2-ethanediyl] ester, reaction products with 2-hydroxy-1,3-propanediyl dimethacrylate and phosphorus oxide | Ingestion                      | Rat                    | LD50 > 2,000 mg/kg                             |
| t-Amyl Hydroperoxide                                                                                                                                             | Dermal                         | Rat                    | LD50 354 mg/kg                                 |
| t-Amyl Hydroperoxide                                                                                                                                             | Inhalation-Vapour (4 hours)    | Rat                    | LC50 2.4 mg/l                                  |
| t-Amyl Hydroperoxide                                                                                                                                             | Ingestion                      | Rat                    | LD50 483 mg/kg                                 |
| 2,6-Di-tert-butyl-p-cresol                                                                                                                                       | Dermal                         | Rat                    | LD50 > 2,000 mg/kg                             |
| 2,6-Di-tert-butyl-p-cresol                                                                                                                                       | Ingestion                      | Rat                    | LD50 > 2,930 mg/kg                             |
| 2-hydroxyethyl methacrylate                                                                                                                                      | Dermal                         | Rabbit                 | LD50 > 5,000 mg/kg                             |
| Methyl Methacrylate                                                                                                                                              | Dermal                         | Rabbit                 | LD50 > 5,000 mg/kg                             |
| 2-hydroxyethyl methacrylate                                                                                                                                      | Ingestion                      | Rat                    | LD50 5,564 mg/kg                               |
| Methyl Methacrylate                                                                                                                                              | Inhalation-Vapour (4 hours)    | Rat                    | LC50 29 mg/l                                   |
| Methyl Methacrylate                                                                                                                                              | Ingestion                      | Rat                    | LD50 7,900 mg/kg                               |

ATE = acute toxicity estimate

## Skin Corrosion/Irritation

| Name                                                  | Species    | Value                     |
|-------------------------------------------------------|------------|---------------------------|
| Triethylene glycol dimethacrylate                     | Guinea pig | Mild irritant             |
| 2-Propenoic acid, 2-methyl-, 3-                       | Rabbit     | No significant irritation |
| (trimethoxysilyl)propyl ester, reaction products with |            |                           |

\_\_\_\_\_

| vitreous silica                                 |                  |                    |
|-------------------------------------------------|------------------|--------------------|
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-           | Rabbit           | Minimal irritation |
| (hydroxymethyl)-1,2-ethanediyl] ester, reaction |                  |                    |
| products with 2-hydroxy-1,3-propanediyl         |                  |                    |
| dimethacrylate and phosphorus oxide             |                  |                    |
| t-Amyl Hydroperoxide                            | Rabbit           | Corrosive          |
| 2,6-Di-tert-butyl-p-cresol                      | Human and animal | Minimal irritation |
| 2-hydroxyethyl methacrylate                     | Rabbit           | Minimal irritation |
| Methyl Methacrylate                             | Human and animal | Mild irritant      |

Serious Eye Damage/Irritation

| Name                                                                                                                                                                       | Species                | Value                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|
| Overall product                                                                                                                                                            | In vitro data          | Corrosive                 |
| Triethylene glycol dimethacrylate                                                                                                                                          | Professional judgement | Moderate irritant         |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester, reaction products with<br>vitreous silica                                                                | Rabbit                 | No significant irritation |
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-<br>(hydroxymethyl)-1,2-ethanediyl] ester, reaction<br>products with 2-hydroxy-1,3-propanediyl<br>dimethacrylate and phosphorus oxide | Rabbit                 | Corrosive                 |
| t-Amyl Hydroperoxide                                                                                                                                                       | Rabbit                 | Corrosive                 |
| 2,6-Di-tert-butyl-p-cresol                                                                                                                                                 | Rabbit                 | Mild irritant             |
| 2-hydroxyethyl methacrylate                                                                                                                                                | Rabbit                 | Moderate irritant         |
| Methyl Methacrylate                                                                                                                                                        | Rabbit                 | Moderate irritant         |

## **Skin Sensitisation**

| Name                                                  | Species           | Value          |
|-------------------------------------------------------|-------------------|----------------|
|                                                       |                   |                |
| Triethylene glycol dimethacrylate                     | Human and animal  | Sensitising    |
| 2-Propenoic acid, 2-methyl-, 3-                       | Human and animal  | Not classified |
| (trimethoxysilyl)propyl ester, reaction products with |                   |                |
| vitreous silica                                       |                   |                |
| 7,7,9(or 7,9,9)-Trimethyl-4,13-dioxo-3,14-dioxa-      | Guinea pig        | Sensitising    |
| 5,12-diazahexadecane-1,16-diyl bismethacrylate        |                   |                |
| 2-Propenoic acid, 2-methyl-, 1,1'-[1-                 | Guinea pig        | Not classified |
| (hydroxymethyl)-1,2-ethanediyl] ester, reaction       |                   |                |
| products with 2-hydroxy-1,3-propanediyl               |                   |                |
| dimethacrylate and phosphorus oxide                   |                   |                |
| t-Amyl Hydroperoxide                                  | similar compounds | Sensitising    |
| 2,6-Di-tert-butyl-p-cresol                            | Human             | Not classified |
| 2-hydroxyethyl methacrylate                           | Human and animal  | Sensitising    |
| Methyl Methacrylate                                   | Human and animal  | Sensitising    |

**Respiratory Sensitisation** 

| Name                | Species | Value          |
|---------------------|---------|----------------|
| Methyl Methacrylate | Human   | Not classified |

Germ Cell Mutagenicity

| Name                                                                                                        | Route    | Value                                                                        |
|-------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|
| Triethylene glycol dimethacrylate                                                                           | In Vitro | Some positive data exist, but the data are not sufficient for classification |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester, reaction products with<br>vitreous silica | In Vitro | Not mutagenic                                                                |

\_\_\_\_

| 2-Propenoic acid, 2-methyl-, 1,1'-[1-<br>(hydroxymethyl)-1,2-ethanediyl] ester, reaction<br>products with 2-hydroxy-1,3-propanediyl<br>dimethacrylate and phosphorus oxide | In Vitro | Not mutagenic                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|
| t-Amyl Hydroperoxide                                                                                                                                                       | In vivo  | Not mutagenic                                                                |
| t-Amyl Hydroperoxide                                                                                                                                                       | In Vitro | Some positive data exist, but the data are not sufficient for classification |
| 2,6-Di-tert-butyl-p-cresol                                                                                                                                                 | In Vitro | Not mutagenic                                                                |
| 2,6-Di-tert-butyl-p-cresol                                                                                                                                                 | In vivo  | Not mutagenic                                                                |
| 2-hydroxyethyl methacrylate                                                                                                                                                | In vivo  | Not mutagenic                                                                |
| 2-hydroxyethyl methacrylate                                                                                                                                                | In Vitro | Some positive data exist, but the data are not sufficient for classification |
| Methyl Methacrylate                                                                                                                                                        | In vivo  | Not mutagenic                                                                |
| Methyl Methacrylate                                                                                                                                                        | In Vitro | Some positive data exist, but the data are not sufficient for classification |

Carcinogenicity

| Name                                                                                                        | Route          | Species                 | Value                                                                        |
|-------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------------------------------------------------------------------------------|
| Triethylene glycol dimethacrylate                                                                           | Dermal         | Mouse                   | Not carcinogenic                                                             |
| 2-Propenoic acid, 2-methyl-, 3-<br>(trimethoxysilyl)propyl ester,<br>reaction products with vitreous silica | Not specified. | Mouse                   | Some positive data exist, but the data are not sufficient for classification |
| 2,6-Di-tert-butyl-p-cresol                                                                                  | Ingestion      | Multiple animal species | Some positive data exist, but the data are not sufficient for classification |
| Methyl Methacrylate                                                                                         | Ingestion      | Rat                     | Not carcinogenic                                                             |
| Methyl Methacrylate                                                                                         | Inhalation     | Human and animal        | Not carcinogenic                                                             |

# Reproductive Toxicity

Reproductive and/or Developmental Effects

| Name                            | Route     | Value               | Species | Test result | <b>Exposure Duration</b> |
|---------------------------------|-----------|---------------------|---------|-------------|--------------------------|
| Triethylene glycol              | Ingestion | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| dimethacrylate                  |           | female reproduction |         | mg/kg/day   |                          |
| Triethylene glycol              | Ingestion | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| dimethacrylate                  |           | male reproduction   |         | mg/kg/day   |                          |
| Triethylene glycol              | Ingestion | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| dimethacrylate                  |           | development         |         | mg/kg/day   |                          |
| 2-Propenoic acid, 2-            | Ingestion | Not classified for  | Rat     | NOAEL 509   | 1 generation             |
| methyl-, 3-                     |           | female reproduction |         | mg/kg/day   |                          |
| (trimethoxysilyl)prop           |           |                     |         |             |                          |
| yl ester, reaction              |           |                     |         |             |                          |
| products with                   |           |                     |         |             |                          |
|                                 | T         | N. ( .1             | D.4     | NOAFI 407   | 1                        |
| 2-Propenoic acid, 2-methyl-, 3- | Ingestion | Not classified for  | Rat     | NOAEL 497   | 1 generation             |
| (trimethoxysilyl)prop           |           | male reproduction   |         | mg/kg/day   |                          |
| yl ester, reaction              |           |                     |         |             |                          |
| products with                   |           |                     |         |             |                          |
| vitreous silica                 |           |                     |         |             |                          |
| 2-Propenoic acid, 2-            | Ingestion | Not classified for  | Rat     | NOAEL       | during                   |
| methyl-, 3-                     | 8         | development         |         | 1,350       | organogenesis            |
| (trimethoxysilyl)prop           |           | <b>r</b>            |         | mg/kg/day   | 5 18 12                  |
| yl ester, reaction              |           |                     |         |             |                          |
| products with                   |           |                     |         |             |                          |
| vitreous silica                 |           |                     |         |             |                          |
| t-Amyl                          | Ingestion | Not classified for  | Rat     | NOAEL 100   | premating into           |
| Hydroperoxide                   |           | female reproduction |         | mg/kg/day   | lactation                |
| t-Amyl                          | Ingestion | Not classified for  | Rat     | NOAEL 100   | 5 weeks                  |
| Hydroperoxide                   |           | male reproduction   |         | mg/kg/day   |                          |

\_\_\_\_\_

| t-Amyl               | Ingestion  | Not classified for  | Rat   | NOAEL 100  | premating into     |
|----------------------|------------|---------------------|-------|------------|--------------------|
| Hydroperoxide        |            | development         |       | mg/kg/day  | lactation          |
| 2,6-Di-tert-butyl-p- | Ingestion  | Not classified for  | Rat   | NOAEL 500  | 2 generation       |
| cresol               |            | female reproduction |       | mg/kg/day  |                    |
| 2,6-Di-tert-butyl-p- | Ingestion  | Not classified for  | Rat   | NOAEL 500  | 2 generation       |
| cresol               |            | male reproduction   |       | mg/kg/day  |                    |
| 2,6-Di-tert-butyl-p- | Ingestion  | Not classified for  | Rat   | NOAEL 100  | 2 generation       |
| cresol               |            | development         |       | mg/kg/day  |                    |
| 2-hydroxyethyl       | Ingestion  | Not classified for  | Rat   | NOAEL      | premating & during |
| methacrylate         |            | female reproduction |       | 1,000      | gestation          |
| ·                    |            |                     |       | mg/kg/day  |                    |
| 2-hydroxyethyl       | Ingestion  | Not classified for  | Rat   | NOAEL      | 49 days            |
| methacrylate         |            | male reproduction   |       | 1,000      | ·                  |
| -                    |            | -                   |       | mg/kg/day  |                    |
| 2-hydroxyethyl       | Ingestion  | Not classified for  | Rat   | NOAEL      | premating & during |
| methacrylate         |            | development         |       | 1,000      | gestation          |
| ·                    |            | _                   |       | mg/kg/day  |                    |
| Methyl Methacrylate  | Inhalation | Not classified for  | Mouse | NOAEL 36.9 |                    |
|                      |            | male reproduction   |       | mg/l       |                    |
| Methyl Methacrylate  | Inhalation | Not classified for  | Rat   | NOAEL 8.3  | during             |
|                      |            | development         |       | mg/l       | organogenesis      |

# Target Organ(s)

**Specific Target Organ Toxicity - single exposure** 

| Name                        | Route      | Target Organ(s)           | Value                                                                                    | Species                   | Test result            | Exposure<br>Duration  |
|-----------------------------|------------|---------------------------|------------------------------------------------------------------------------------------|---------------------------|------------------------|-----------------------|
| t-Amyl<br>Hydroperoxid<br>e | Inhalation | respiratory<br>irritation | Some positive<br>data exist, but the<br>data are not<br>sufficient for<br>classification | similar health<br>hazards | NOAEL Not<br>available |                       |
| Methyl<br>Methacrylate      | Inhalation | respiratory<br>irritation | May cause respiratory irritation                                                         | Human                     | NOAEL Not<br>available | occupational exposure |

Specific Target Organ Toxicity - repeated exposure

| Name                                                                                                                         | Route      | Target Organ(s)                                                                                          | Value          | Species | Test result            | Exposure <b>Duration</b> |
|------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------|----------------|---------|------------------------|--------------------------|
| Triethylene<br>glycol<br>dimethacrylat<br>e                                                                                  | Dermal     | kidney and/or<br>bladder   blood                                                                         | Not classified | Mouse   | NOAEL 833<br>mg/kg/day | 78 weeks                 |
| 2-Propenoic<br>acid, 2-<br>methyl-, 3-<br>(trimethoxysil<br>yl)propyl<br>ester, reaction<br>products with<br>vitreous silica | Inhalation | respiratory<br>system   silicosis                                                                        | Not classified | Human   | NOAEL Not<br>available | occupational exposure    |
| t-Amyl<br>Hydroperoxid<br>e                                                                                                  | Inhalation | endocrine system   liver   immune system   kidney and/or bladder   hematopoietic system   nervous system | Not classified | Rat     | NOAEL 0.337<br>mg/l    | 28 days                  |
| t-Amyl                                                                                                                       | Ingestion  | liver   kidney                                                                                           | Not classified | Rat     | NOAEL 100              | 5 weeks                  |

| Hydroperoxid                        |            | and/or bladder               |                                                                              |                         | mg/kg/day                |                       |
|-------------------------------------|------------|------------------------------|------------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------|
| e<br>2,6-Di-tert-<br>butyl-p-cresol | Ingestion  | liver                        | Some positive data exist, but the data are not sufficient for classification | Rat                     | NOAEL 250<br>mg/kg/day   | 28 days               |
| 2,6-Di-tert-<br>butyl-p-cresol      | Ingestion  | kidney and/or<br>bladder     | Not classified                                                               | Rat                     | NOAEL 500<br>mg/kg/day   | 2 generation          |
| 2,6-Di-tert-<br>butyl-p-cresol      | Ingestion  | blood                        | Not classified                                                               | Rat                     | LOAEL 420<br>mg/kg/day   | 40 days               |
| 2,6-Di-tert-<br>butyl-p-cresol      | Ingestion  | endocrine<br>system          | Not classified                                                               | Rat                     | NOAEL 25<br>mg/kg/day    | 2 generation          |
| 2,6-Di-tert-<br>butyl-p-cresol      | Ingestion  | heart                        | Not classified                                                               | Mouse                   | NOAEL 3,480<br>mg/kg/day | 10 weeks              |
| Methyl<br>Methacrylate              | Dermal     | peripheral<br>nervous system | Not classified                                                               | Human                   | NOAEL Not available      | occupational exposure |
| Methyl<br>Methacrylate              | Inhalation | olfactory system             | Causes damage to<br>organs through<br>prolonged or<br>repeated exposure      | Human                   | NOAEL Not<br>available   | occupational exposure |
| Methyl<br>Methacrylate              | Inhalation | kidney and/or<br>bladder     | Not classified                                                               | Multiple animal species | NOAEL Not available      | 14 weeks              |
| Methyl<br>Methacrylate              | Inhalation | liver                        | Not classified                                                               | Mouse                   | NOAEL 12.3<br>mg/l       | 14 weeks              |
| Methyl<br>Methacrylate              | Inhalation | respiratory<br>system        | Not classified                                                               | Human                   | NOAEL Not<br>available   | occupational exposure |

### **Aspiration Hazard**

For the component/components, either no data are currently available or the data are not sufficient for classification.

#### **Exposure Levels**

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

#### **Interactive Effects**

Not determined.

# **SECTION 12: Ecological information**

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

## 12.1. Toxicity

#### Acute aquatic hazard:

GHS Acute 3: Harmful to aquatic life.

#### Chronic aquatic hazard:

GHS Chronic 3: Harmful to aquatic life with long lasting effects.

No product test data available.

| Material    | CAS Number | Organism    | Туре         | Exposure | Test endpoint | Test result |
|-------------|------------|-------------|--------------|----------|---------------|-------------|
| Triethylene | 109-16-0   | Green algae | Experimental | 72 hours | EC50          | >100 mg/l   |

| .11              | <u> </u>    | <u> </u>    | 1                | 1         | <del>                                     </del> | <u> </u>      |
|------------------|-------------|-------------|------------------|-----------|--------------------------------------------------|---------------|
| glycol           |             |             |                  |           |                                                  |               |
| dimethacrylate   | 100 16 0    | 7.1 F: 1    | D : 1            | 061       | 1.050                                            | 1.6.4. /1     |
| Triethylene      | 109-16-0    | Zebra Fish  | Experimental     | 96 hours  | LC50                                             | 16.4 mg/l     |
| glycol           |             |             |                  |           |                                                  |               |
| dimethacrylate   |             |             |                  |           |                                                  |               |
| Triethylene      | 109-16-0    | Green algae | Experimental     | 72 hours  | NOEC                                             | 18.6 mg/l     |
| glycol           |             |             |                  |           |                                                  |               |
| dimethacrylate   |             |             |                  |           |                                                  |               |
| Triethylene      | 109-16-0    | Water flea  | Experimental     | 21 days   | NOEC                                             | 32 mg/l       |
| glycol           |             |             |                  |           |                                                  |               |
| dimethacrylate   |             |             |                  |           |                                                  |               |
| 2-Propenoic      | 122334-95-6 | Activated   | Estimated        | 3 hours   | NOEC                                             | >=1,000  mg/l |
| acid, 2-methyl-, |             | sludge      |                  |           |                                                  | , ,           |
| 3-               |             |             |                  |           |                                                  |               |
| (trimethoxysily  |             |             |                  |           |                                                  |               |
| l)propyl ester,  |             |             |                  |           |                                                  |               |
| reaction         |             |             |                  |           |                                                  |               |
| products with    |             |             |                  |           |                                                  |               |
| vitreous silica  |             |             |                  |           |                                                  |               |
| 2-Propenoic      | 122334-95-6 |             | Data not         |           |                                                  | N/A           |
| acid, 2-methyl-, | 122334-93-0 |             | available or     |           |                                                  | IN/A          |
| 3-               |             |             | insufficient for |           |                                                  |               |
|                  |             |             |                  |           |                                                  |               |
| (trimethoxysily  |             |             | classification   |           |                                                  |               |
| l)propyl ester,  |             |             |                  |           |                                                  |               |
| reaction         |             |             |                  |           |                                                  |               |
| products with    |             |             |                  |           |                                                  |               |
| vitreous silica  |             |             |                  |           |                                                  |               |
| 7,7,9(or 7,9,9)- | 72869-86-4  | Green algae | Endpoint not     | 72 hours  | ErC50                                            | >100 mg/l     |
| Trimethyl-       |             |             | reached          |           |                                                  |               |
| 4,13-dioxo-      |             |             |                  |           |                                                  |               |
| 3,14-dioxa-      |             |             |                  |           |                                                  |               |
| 5,12-            |             |             |                  |           |                                                  |               |
| diazahexadecan   |             |             |                  |           |                                                  |               |
| e-1,16-diyl      |             |             |                  |           |                                                  |               |
| bismethacrylate  |             |             |                  |           |                                                  |               |
| 7,7,9(or 7,9,9)- | 72869-86-4  | Water flea  | Experimental     | 48 hours  | EC50                                             | >100 mg/l     |
| Trimethyl-       |             |             |                  |           |                                                  |               |
| 4,13-dioxo-      |             |             |                  |           |                                                  |               |
| 3,14-dioxa-      |             |             |                  |           |                                                  |               |
| 5,12-            |             |             |                  |           |                                                  |               |
| diazahexadecan   |             |             |                  |           |                                                  |               |
| e-1,16-diyl      |             |             |                  |           |                                                  |               |
| bismethacrylate  |             |             |                  |           |                                                  |               |
| 7,7,9(or 7,9,9)- | 72869-86-4  | Zebra Fish  | Experimental     | 96 hours  | LC50                                             | 10.1 mg/l     |
| Trimethyl-       | , 200, 00 1 | 2001411011  |                  | 5 110 015 |                                                  | 1 1 1115/1    |
| 4,13-dioxo-      |             |             |                  |           |                                                  |               |
| 3,14-dioxa-      |             |             |                  |           |                                                  |               |
| 5,12-            |             |             |                  |           |                                                  |               |
| diazahexadecan   |             |             |                  |           |                                                  |               |
| e-1,16-diyl      |             |             |                  |           |                                                  |               |
|                  |             |             |                  |           |                                                  |               |
| bismethacrylate  | 72070 07 4  | C 1         | Dada 1 / /       | 72.1      | F.:C10                                           | > 100 /1      |
| 7,7,9(or 7,9,9)- | 72869-86-4  | Green algae | Endpoint not     | 72 hours  | ErC10                                            | >100 mg/l     |
| Trimethyl-       |             |             | reached          |           |                                                  |               |
| 4,13-dioxo-      |             |             |                  |           |                                                  |               |
| 3,14-dioxa-      |             |             |                  |           |                                                  |               |

| 5,12-                |                |              |                           |            |       |             |
|----------------------|----------------|--------------|---------------------------|------------|-------|-------------|
| diazahexadecan       |                |              |                           |            |       |             |
| e-1,16-diyl          |                |              |                           |            |       |             |
| bismethacrylate      |                |              |                           |            |       |             |
| 2-Propenoic          | 1224866-76-5   | Green algae  | Endpoint not              | 72 hours   | EC50  | >100 mg/l   |
| acid, 2-methyl-,     | 122.000 70 0   |              | reached                   | 72 110 413 |       | 100 mg/1    |
| 1,1'-[1-             |                |              |                           |            |       |             |
| (hydroxymethy        |                |              |                           |            |       |             |
| 1)-1,2-              |                |              |                           |            |       |             |
| ethanediyl]          |                |              |                           |            |       |             |
| ester, reaction      |                |              |                           |            |       |             |
| products with        |                |              |                           |            |       |             |
| 2-hydroxy-1,3-       |                |              |                           |            |       |             |
| propanediyl          |                |              |                           |            |       |             |
| dimethacrylate       |                |              |                           |            |       |             |
| and phosphorus       |                |              |                           |            |       |             |
| oxide                |                |              |                           |            |       |             |
| 2-Propenoic          | 1224866-76-5   | Water flea   | Experimental              | 48 hours   | EC50  | >100 mg/l   |
| acid, 2-methyl-,     |                |              | 1                         |            |       |             |
| 1,1'-[1-             |                |              |                           |            |       |             |
| (hydroxymethy        |                |              |                           |            |       |             |
| 1)-1,2-              |                |              |                           |            |       |             |
| ethanediyl]          |                |              |                           |            |       |             |
| ester, reaction      |                |              |                           |            |       |             |
| products with        |                |              |                           |            |       |             |
| 2-hydroxy-1,3-       |                |              |                           |            |       |             |
| propanediyl          |                |              |                           |            |       |             |
| dimethacrylate       |                |              |                           |            |       |             |
| and phosphorus       |                |              |                           |            |       |             |
| oxide                |                |              |                           |            |       |             |
| 2-Propenoic          | 1224866-76-5   | Green algae  | Experimental              | 72 hours   | NOEC  | 56 mg/l     |
| acid, 2-methyl-,     |                |              |                           |            |       |             |
| 1,1'-[1-             |                |              |                           |            |       |             |
| (hydroxymethy        |                |              |                           |            |       |             |
| 1)-1,2-              |                |              |                           |            |       |             |
| ethanediyl]          |                |              |                           |            |       |             |
| ester, reaction      |                |              |                           |            |       |             |
| products with        |                |              |                           |            |       |             |
| 2-hydroxy-1,3-       |                |              |                           |            |       |             |
| propanediyl          |                |              |                           |            |       |             |
| dimethacrylate       |                |              |                           |            |       |             |
| and phosphorus oxide |                |              |                           |            |       |             |
| Silane,              | 92797-60-9     |              | Data not                  |            |       | N/A         |
| trimethoxyocty       | 74 7 -00-9<br> |              | available or              |            |       | 1 V / A     |
| l-, hydrolysis       |                |              | insufficient for          |            |       |             |
| products with        |                |              | classification            |            |       |             |
| silica               |                |              | Ciassification            |            |       |             |
| t-Amyl               | 3425-61-4      | Activated    | Estimated                 | 3 hours    | EC50  | 138 mg/l    |
| Hydroperoxide        | J74J-01-4      | sludge       | Lamateu                   | 5 Hours    | LCJU  | 1.50 mg/1   |
| t-Amyl               | 3425-61-4      | Water flea   | Estimated                 | 48 hours   | EC50  | 6.7 mg/l    |
| Hydroperoxide        | J74J-01-4      | vv atci iiea | Lamateu                   | TO HOUIS   | LCJU  | 0.7 mg/1    |
| t-Amyl               | 3425-61-4      | Zebra Fish   | Estimated                 | 96 hours   | LC50  | 11.3 mg/l   |
| Hydroperoxide        | 3423-01-4      | Zeula Fisii  | Lamateu                   | 20 HOUIS   | LCJU  | 11.3 IIIg/I |
|                      | 3425-61-4      | Green algae  | Experimental              | 72 hours   | EC50  | 1 2 mg/l    |
| t-Amyl               | J44J-01-4      | oreen argae  | <sub>L</sub> Experimental | 12 HOUIS   | ITC30 | 1.2 mg/l    |

| 3425-61-4   | Green algae                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.38 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 128-37-0    | Activated                                                                                                                                                                                                                  | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >10,000 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ., 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 128-37-0    |                                                                                                                                                                                                                            | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >0.4 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , = ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 128-37-0    | Water flea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.48 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120 57 0    | , ator rica                                                                                                                                                                                                                | Emperimentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. 10 1118/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 128-37-0    | Zehra Eish                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No tox obs at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >100 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120 37 0    | 2014 1 1511                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 100 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 128-37-0    | Green algae                                                                                                                                                                                                                | Evnerimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120 57 0    | Green argue                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /2 nours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Leto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 128-37-0    | Medaka                                                                                                                                                                                                                     | Evperimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.053 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120-37-0    | IVICUAKA                                                                                                                                                                                                                   | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 128 27 0    | Water flee                                                                                                                                                                                                                 | Evperimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.023 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120-37-0    | water fiea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.023 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 969 77 O    | Turbot                                                                                                                                                                                                                     | Analogous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 833 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 000-77-9    | 1 11001                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 055 Hig/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 060 77 0    | Eath and                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 227/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 808-77-9    | 1                                                                                                                                                                                                                          | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96 nours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.60.77.0   |                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ECSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 710 /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 868-77-9    | Green algae                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /2 nours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 710 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 060.77.0    | XX . CI                                                                                                                                                                                                                    | D : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EGEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 868-77-9    | Water flea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 380 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.60. 77. 0 |                                                                                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.60 //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 868-77-9    | Green algae                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 868-77-9    | Water flea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.1 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 868-77-9    |                                                                                                                                                                                                                            | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >3,000 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 868-77-9    |                                                                                                                                                                                                                            | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LD50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <98 mg per kg of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bodyweight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80-62-6     | Green algae                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >110 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Rainbow trout                                                                                                                                                                                                              | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >79 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Water flea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Green algae                                                                                                                                                                                                                | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Water flea                                                                                                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Activated                                                                                                                                                                                                                  | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EC20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | sludge                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 80-62-6     | Soil microbes                                                                                                                                                                                                              | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >1,000 mg/kg (Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6046-93-1   | Green algae                                                                                                                                                                                                                | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6046-93-1   | Water flea                                                                                                                                                                                                                 | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 3425-61-4 128-37-0 128-37-0 128-37-0 128-37-0 128-37-0 128-37-0 128-37-0 128-37-0 868-77-9 868-77-9 868-77-9 868-77-9 868-77-9 868-77-9 868-77-9 868-77-9 868-76-6 80-62-6 80-62-6 80-62-6 80-62-6 80-62-6 80-62-6 80-62-6 | 128-37-0 Activated sludge 128-37-0 Green algae 128-37-0 Water flea 128-37-0 Zebra Fish 128-37-0 Green algae 128-37-0 Medaka 128-37-0 Water flea 868-77-9 Fathead minnow 868-77-9 Green algae 868-77-9 Water flea 868-77-9 Water flea 868-77-9 Green algae 868-77-9 Water flea 868-77-9 Soriem algae 80-62-6 Green algae 80-62-6 Green algae 80-62-6 Soil microbes 80-62-6 Soil microbes | Activated sludge 128-37-0 Green algae Experimental 128-37-0 Water flea Experimental 128-37-0 Zebra Fish Experimental 128-37-0 Green algae Experimental 128-37-0 Green algae Experimental 128-37-0 Medaka Experimental 128-37-0 Water flea Experimental 128-37-0 Fathead Fathead 128-37-0 F | Activated sludge  128-37-0 Green algae Experimental 72 hours  128-37-0 Water flea Experimental 96 hours  128-37-0 Green algae Experimental 72 hours  128-37-0 Green algae Experimental 72 hours  128-37-0 Medaka Experimental 42 days  128-37-0 Medaka Experimental 21 days  128-37-0 Water flea Experimental 21 days  868-77-9 Turbot Analogous Compound 96 hours  668-77-9 Fathead Experimental 96 hours  668-77-9 Green algae Experimental 72 hours  868-77-9 Water flea Experimental 48 hours  868-77-9 Water flea Experimental 72 hours  868-77-9 Water flea Experimental 72 hours  868-77-9 Water flea Experimental 16 hours  868-77-9 Experimental 16 hours  868-77-9 Experimental 172 hours  868-77-9 Experimental 18 hours  868-77-9 Experimental 196 hours  868-77-9 Experimental 172 hours  80-62-6 Green algae Experimental 72 hours  80-62-6 Green algae Experimental 72 hours  80-62-6 Water flea Experimental 72 hours  80-62-6 Green algae Experimental 30 minutes  80-62-6 Soil microbes Experimental 28 days  6046-93-1 Green algae Experimental 28 days | 128-37-0   Activated sludge   Experimental   3 hours   EC50     128-37-0   Green algae   Experimental   72 hours   EC50     128-37-0   Water flea   Experimental   48 hours   EC50     128-37-0   Zebra Fish   Experimental   96 hours   No tox obs at lmt of water sol     128-37-0   Green algae   Experimental   72 hours   EC10     128-37-0   Medaka   Experimental   42 days   NOEC     128-37-0   Water flea   Experimental   21 days   NOEC     128-37-0   Water flea   Experimental   21 days   NOEC     128-37-0   Water flea   Experimental   21 days   NOEC     128-37-0   Water flea   Experimental   96 hours   LC50     128-37-0   Green algae   Experimental   72 hours   EC50     128-37-9   Fathead   Experimental   72 hours   EC50     128-37-9   Green algae   Experimental   72 hours   EC50     128-37-9   Water flea   Experimental   72 hours   EC50     128-37-9   Water flea   Experimental   72 hours   EC50     128-37-0   Water flea   Experimental   72 hours   EC50     128-37-0   Water flea   Experimental   72 hours   EC50     128-37-0   Experimental   16 hours   EC50     128-37-0   Experimental   18 hours   EC50     128-37-0   Experimental   27 hours   EC50     128-37-0   Experimental   28 hours   EC50     128-37-0   Experimental   29 hours   EC50     128-37-0   Experimental   21 days   NOEC     128-37-0   NOEC   Experimental   21 days   NOEC     128-37-0   Experimental   22 days   NOEC     128-37-0   Experimental   23 days   NOEC     128-37-0   Experimental   24 days   NOEC     128-37-0   Experimental   28 days   NOEC     128-37-0   Experimental   Experimental   28 days   NOEC     128-37-0   Experimental   Experimental   Experimental   Experimental   Experimental |

| copper(2+) salt, |           |                |           |         |      |                       |
|------------------|-----------|----------------|-----------|---------|------|-----------------------|
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Fathead        | Estimated | 22 days | EC10 | 0.019 mg/l            |
| /                |           |                | Estimated | 32 days | EC10 | 0.019 mg/1            |
| copper(2+) salt, |           | minnow         |           |         |      |                       |
| monohydrate      | 6046 02 1 | C 1            | E .: . 1  |         | NOEG | 0.000 //              |
| Acetic acid,     | 6046-93-1 | Green algae    | Estimated |         | NOEC | 0.069 mg/l            |
| copper(2+) salt, |           |                |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Water flea     | Estimated | 7 days  | NOEC | 0.01 mg/l             |
| copper(2+) salt, |           |                |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Activated      | Estimated |         | EC50 | 22 mg/l               |
| copper(2+) salt, |           | sludge         |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Barley         | Estimated | 4 days  | NOEC | 50 mg/kg (Dry Weight) |
| copper(2+) salt, |           |                |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Bobwhite quail | Estimated | 14 days | LD50 | 4,402 mg per kg of    |
| copper(2+) salt, |           |                |           |         |      | bodyweight            |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Redworm        | Estimated | 56 days | NOEC | 31 mg/kg (Dry Weight) |
| copper(2+) salt, |           |                |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Sediment       | Estimated | 28 days | NOEC | 57.5 mg/kg (Dry       |
| copper(2+) salt, |           | Worm           |           |         |      | Weight)               |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Soil microbes  | Estimated | 4 days  | NOEC | 38 mg/kg (Dry Weight) |
| copper(2+) salt, |           |                |           |         |      |                       |
| monohydrate      |           |                |           |         |      |                       |
| Acetic acid,     | 6046-93-1 | Springtail     | Estimated | 28 days | NOEC | 87.7 mg/kg (Dry       |
| copper(2+) salt, |           | 1 5            |           |         |      | Weight)               |
| monohydrate      |           |                |           |         |      |                       |
|                  | 1         |                |           |         |      |                       |

# 12.2. Persistence and degradability

| Material         | CAS Number  | Test type      | Duration | Study Type    | Test result    | Protocol             |
|------------------|-------------|----------------|----------|---------------|----------------|----------------------|
| Triethylene      | 109-16-0    | 1              | 28 days  | CO2 evolution | 85 % weight    | OECD 301B - Modified |
| glycol           |             | Biodegradation |          |               |                | sturm or CO2         |
| dimethacrylate   |             |                |          |               |                |                      |
| 2-Propenoic      | 122334-95-6 | Data not       | N/A      | N/A           | N/A            | N/A                  |
| acid, 2-methyl-, |             | available-     |          |               |                |                      |
| 3-               |             | insufficient   |          |               |                |                      |
| (trimethoxysily  |             |                |          |               |                |                      |
| l)propyl ester,  |             |                |          |               |                |                      |
| reaction         |             |                |          |               |                |                      |
| products with    |             |                |          |               |                |                      |
| vitreous silica  |             |                |          |               |                |                      |
| 7,7,9(or 7,9,9)- | 72869-86-4  | 1 *            | 28 days  | CO2 evolution | 22 %CO2        | OECD 301B - Modified |
| Trimethyl-       |             | Biodegradation |          |               | evolution/THC  | sturm or CO2         |
| 4,13-dioxo-      |             |                |          |               | O2 evolution   |                      |
| 3,14-dioxa-      |             |                |          |               | (does not pass |                      |
| 5,12-            |             |                |          |               | 10-day         |                      |
| diazahexadecan   |             |                |          |               | window)        |                      |
| e-1,16-diyl      |             |                |          |               |                |                      |
| bismethacrylate  |             |                |          |               |                |                      |

\_\_\_\_\_

| 2-Propenoic acid, 2-methyl-, 1,1'-[1- (hydroxymethy l)-1,2- ethanediyl] ester, reaction products with 2-hydroxy-1,3- propanediyl dimethacrylate and phosphorus oxide | 1224866-76-5 | Experimental<br>Biodegradation          | 28 days | BOD                                 | 82 %BOD/ThB<br>OD    | OECD 301F -<br>Manometric<br>respirometry |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|---------|-------------------------------------|----------------------|-------------------------------------------|
| Silane,<br>trimethoxyocty<br>l-, hydrolysis<br>products with<br>silica                                                                                               | 92797-60-9   | Data not<br>available-<br>insufficient  | N/A     | N/A                                 | N/A                  | N/A                                       |
| t-Amyl<br>Hydroperoxide                                                                                                                                              | 3425-61-4    | Estimated<br>Biodegradation             | 28 days | BOD                                 | 0 %BOD/ThB<br>OD     | OECD 301D - Closed<br>bottle test         |
| 2,6-Di-tert-<br>butyl-p-cresol                                                                                                                                       | 128-37-0     | Data not available-insufficient         | N/A     | N/A                                 | N/A                  | N/A                                       |
| 2-hydroxyethyl methacrylate                                                                                                                                          | 868-77-9     | Experimental<br>Hydrolysis              |         | Hydrolytic<br>half-life basic<br>pH | 10.9 days (t<br>1/2) | OECD 111 Hydrolysis<br>func of pH         |
| 2-hydroxyethyl methacrylate                                                                                                                                          | 868-77-9     | Experimental Biodegradation             | 28 days | BOD                                 | 84 %BOD/CO<br>D      | OECD 301D - Closed<br>bottle test         |
| Methyl<br>Methacrylate                                                                                                                                               | 80-62-6      | Experimental Biodegradation             | 14 days | BOD                                 | _                    |                                           |
| Acetic acid,<br>copper(2+) salt,<br>monohydrate                                                                                                                      | 6046-93-1    | Analogous<br>Compound<br>Biodegradation | 14 days | BOD                                 | 74 %BOD/ThB<br>OD    | OECD 301C - MITI<br>test (I)              |

# 12.3 : Bioaccumulative potential

| Material         | CAS Number  | Test type        | Duration | Study Type | Test result | Protocol            |
|------------------|-------------|------------------|----------|------------|-------------|---------------------|
| Triethylene      | 109-16-0    | Experimental     |          | Log Kow    | 2.3         | Non-standard method |
| glycol           |             | Bioconcentrati   |          |            |             |                     |
| dimethacrylate   |             | on               |          |            |             |                     |
| 2-Propenoic      | 122334-95-6 | Data not         | N/A      | N/A        | N/A         | N/A                 |
| acid, 2-methyl-, |             | available or     |          |            |             |                     |
| 3-               |             | insufficient for |          |            |             |                     |
| (trimethoxysily  |             | classification   |          |            |             |                     |
| l)propyl ester,  |             |                  |          |            |             |                     |
| reaction         |             |                  |          |            |             |                     |
| products with    |             |                  |          |            |             |                     |
| vitreous silica  |             |                  |          |            |             |                     |
| 7,7,9(or 7,9,9)- | 72869-86-4  | Experimental     |          | Log Kow    | 3.39        | Non-standard method |
| Trimethyl-       |             | Bioconcentrati   |          |            |             |                     |
| 4,13-dioxo-      |             | on               |          |            |             |                     |
| 3,14-dioxa-      |             |                  |          |            |             |                     |
| 5,12-            |             |                  |          |            |             |                     |
| diazahexadecan   |             |                  |          |            |             |                     |
| e-1,16-diyl      |             |                  |          |            |             |                     |

| bismethacrylate                                                                                                                                                      |              |                                                                |         |                            |       |                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------|---------|----------------------------|-------|-----------------------------------------------------------|
| 2-Propenoic acid, 2-methyl-, 1,1'-[1- (hydroxymethy l)-1,2- ethanediyl] ester, reaction products with 2-hydroxy-1,3- propanediyl dimethacrylate and phosphorus oxide | 1224866-76-5 | Experimental<br>Bioconcentrati<br>on                           |         | Log Kow                    | -0.2  | Non-standard method                                       |
| Silane,<br>trimethoxyocty<br>l-, hydrolysis<br>products with<br>silica                                                                                               | 92797-60-9   | Data not<br>available or<br>insufficient for<br>classification | N/A     | N/A                        | N/A   | N/A                                                       |
| t-Amyl<br>Hydroperoxide                                                                                                                                              | 3425-61-4    | Estimated<br>Bioconcentrati<br>on                              |         | Log Kow                    | 1.43  | Estimated: Octanol-<br>water partition<br>coefficient     |
| 2,6-Di-tert-<br>butyl-p-cresol                                                                                                                                       | 128-37-0     | Experimental<br>BCF - Carp                                     | 56 days | Bioaccumulatio<br>n factor | 1277  | OECD 305E -<br>Bioaccumulation flow-<br>through fish test |
| 2-hydroxyethyl methacrylate                                                                                                                                          | 868-77-9     | Experimental Bioconcentrati on                                 |         | Log Kow                    | 0.42  | OECD 107 log Kow<br>shke flsk mtd                         |
| Methyl<br>Methacrylate                                                                                                                                               | 80-62-6      | Experimental Bioconcentrati on                                 |         | Log Kow                    | 1.38  | OECD 107 log Kow<br>shke flsk mtd                         |
| Acetic acid,<br>copper(2+) salt,<br>monohydrate                                                                                                                      | 6046-93-1    | Analogous<br>Compound<br>Bioconcentrati<br>on                  |         | Log Kow                    | -0.17 |                                                           |

#### 12.4. Mobility in soil

Please contact manufacturer for more details

#### 12.5 Other adverse effects

No information available.

# **SECTION 13: Disposal considerations**

## 13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Incinerate in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes.

# **SECTION 14: Transport Information**

Australian Dangerous Goods Code (ADG) - Road/Rail Transport

UN No.: Not applicable.

## 3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Base Paste

Proper shipping name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

Hazchem Code: Not applicable

**IERG:** Not applicable.

International Air Transport Association (IATA) - Air Transport

UN No.: Not applicable.

Proper shipping name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

International Maritime Dangerous Goods Code (IMDG)- Marine Transport

UN No.: Not applicable.

Proper shipping name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.
Marine Pollutant: Not applicable.

# **SECTION 15: Regulatory information**

### 15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

#### **Australian Inventory Status:**

This product is regulated by the Therapeutics Goods Administration and is exempt from compliance with the Industrial Chemicals (Notification and Assessment) Act 1989 as amended.

## **SECTION 16: Other information**

#### **Revision information:**

Complete document review.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

#### 3M Australia SDSs are available at www.3m.com.au



# Safety Data Sheet

Copyright, 2022, 3M Company. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

**Document group:** 41-5399-5 **Version number:** 2.00

**Issue Date:** 19/05/2022 **Supersedes date:** 13/12/2020

This Safety Data Sheet has been prepared in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice (Safe Work Australia, December 2011)

## **SECTION 1: Identification**

#### 1.1. Product identifier

3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Catalyst Paste

#### 1.2. Recommended use and restrictions on use

#### Recommended use

Dental Product, Dental Cement

#### Restrictions on use

For use only by dental professionals in approved indications.

#### 1.3. Supplier's details

Address: 3M Australia - Building A, 1 Rivett Road, North Ryde NSW 2113

**Telephone:** 136 136

E Mail: productinfo.au@mmm.com

Website: www.3m.com.au

## 1.4. Emergency telephone number

EMERGENCY: 1800 097 146 (Australia only)

## **SECTION 2: Hazard identification**

This product is classified as a hazardous chemical according to the Model Work Health and Safety Regulations, 2011, in accordance with applicable State and Territory legislation.

Refer to Section 14 of this Safety Data Sheets for product Dangerous Goods Classification.

### 2.1. Classification of the substance or mixture

Skin Sensitizer: Category 1A.

#### 2.2. Label elements

The label elements below were prepared in accordance with the Code of Practice on Preparation of Safety Data Sheets for Hazardous Chemicals (Safe Work Australia, December 2011). This information may be different from the actual product label.

### Signal word

## Warning

## **Symbols**

Exclamation mark |

## **Pictograms**



#### **Hazard statements**

H317 May cause an allergic skin reaction.

#### **Precautionary statements**

**Prevention:** 

P272 Contaminated work clothing should not be allowed out of the workplace.

P280E Wear protective gloves.

**Response:** 

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.

P333 + P313 If skin irritation or rash occurs: Get medical advice/attention. P362 + P364 Take off contaminated clothing and wash it before reuse.

Disposal:

P501 Dispose of contents/container in accordance with applicable

local/regional/national/international regulations.

## 2.3. Other assigned/identified product hazards

None known.

## 2.4. Other hazards which do not result in classification

Harmful to aquatic life with long lasting effects.

# **SECTION 3: Composition/information on ingredients**

This material is a mixture.

| Ingredient                                | CAS Nbr      | % by Weight |
|-------------------------------------------|--------------|-------------|
| Diurethanedimethacrylate                  | 72869-86-4   | 20 - 40     |
| Ytterbium (III) fluoride                  | 13760-80-0   | 30 - 40     |
| Glass powder (65997-17-3), surface        | None         | 15 - 30     |
| modified with 2-propenoic acid, 2         |              |             |
| methyl3-(trimethoxysilyl)propyl ester     |              |             |
| (2530-85-0) and phenyltrimethoxy silane   |              |             |
| (2996-92-1), bulk material                |              |             |
| Trithylene Glycol Dimethacrylate          | 109-16-0     | < 10        |
| Silane, trimethoxyoctyl-, hydrolysis      | 92797-60-9   | < 5         |
| products with silica                      |              |             |
| L-Ascorbic acid, 6-hexadecanoate, hydrate | 2094655-53-3 | < 2         |
| (1:2)                                     |              |             |
| Titanium dioxide                          | 13463-67-7   | < 1         |
| Triphenyl Phosphite                       | 101-02-0     | < 1         |

## 3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Catalyst Paste

| 2-hydroxyethyl methacrylate   | 868-77-9   | < 0.5 |
|-------------------------------|------------|-------|
| Ethyl 4-dimethylaminobenzoate | 10287-53-3 | < 0.2 |

## **SECTION 4: First aid measures**

#### 4.1. Description of first aid measures

#### Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

#### Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

#### Eye contact

No need for first aid is anticipated.

#### If swallowed

Rinse mouth. If you feel unwell, get medical attention.

#### 4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching).

#### 4.3. Indication of any immediate medical attention and special treatment required

Not applicable

# **SECTION 5: Fire-fighting measures**

#### 5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

## 5.2. Special hazards arising from the substance or mixture

None inherent in this product.

#### **Hazardous Decomposition or By-Products**

SubstanceConditionCarbon monoxide.During combustion.Carbon dioxide.During combustion.Irritant vapours or gases.During combustion.

## 5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

# **SECTION 6: Accidental release measures**

### 6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

#### 6.2. Environmental precautions

Avoid release to the environment.

## 6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

# **SECTION 7: Handling and storage**

### 7.1. Precautions for safe handling

A no-touch technique is recommended. If skin contact occurs, wash skin with soap and water. Acrylates may penetrate commonly-used gloves. If product contacts glove, remove and discard glove, wash hands immediately with soap and water and then re-glove. Do not handle until all safety precautions have been read and understood. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Do not get in eyes. Use personal protective equipment (eg. gloves, respirators...) as required.

#### 7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from oxidising agents.

# **SECTION 8: Exposure controls/personal protection**

#### 8.1 Control parameters

### Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

| Ingredient       | CAS Nbr    | Agency         | Limit type               | Additional comments     |
|------------------|------------|----------------|--------------------------|-------------------------|
| Titanium dioxide | 13463-67-7 | ACGIH          | TWA:10 mg/m <sup>3</sup> | A4: Not class. as human |
|                  |            |                |                          | carcin                  |
| Titanium dioxide | 13463-67-7 | Australia OELs | TWA(Inspirable dust)(8   |                         |
|                  |            |                | hours):10 mg/m3          |                         |

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

Australia OELs: Australia. Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment

CMRG: Chemical Manufacturer's Recommended Guidelines

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling Sen: Sensitiser

Sk: Absorption through the skin may be a significant source of exposure.

#### 8.2. Exposure controls

#### 8.2.1. Engineering controls

Use in a well-ventilated area.

## 8.2.2. Personal protective equipment (PPE)

#### Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Select and use eye protection in accordance with AS/NZS 1336. Eye protection should comply with the performance specifications of AS/NZS 1337.

#### Skin/hand protection

See Section 7.1 for additional information on skin protection.

## **Respiratory protection**

None required.

# **SECTION 9: Physical and chemical properties**

9.1. Information on basic physical and chemical properties

| . Information on basic physical and chemical properties |                                        |
|---------------------------------------------------------|----------------------------------------|
| Physical state                                          | Solid.                                 |
| Specific Physical Form:                                 | Paste                                  |
|                                                         |                                        |
| Colour                                                  | Yellow                                 |
| Odour                                                   | Slight Acrylic                         |
| Odour threshold                                         | No data available.                     |
| рН                                                      | Not applicable.                        |
| Melting point/Freezing point                            | No data available.                     |
| Boiling point/Initial boiling point/Boiling range       | Not applicable.                        |
| Flash point                                             | Flash point > 93 °C (200 °F)           |
| Evaporation rate                                        | No data available.                     |
| Flammability (solid, gas)                               | Not classified                         |
| Flammable Limits(LEL)                                   | Not applicable.                        |
| Flammable Limits(UEL)                                   | Not applicable.                        |
| Vapour pressure                                         | No data available.                     |
| Vapor Density and/or Relative Vapor Density             | No data available.                     |
| Density                                                 | Approximately 2.1 g/cm3 [Details:20°C] |
| Relative density                                        | Approximately - 2.1 [Ref Std:WATER=1]  |
| Water solubility                                        | Negligible                             |
| Solubility- non-water                                   | No data available.                     |
| Partition coefficient: n-octanol/water                  | No data available.                     |
| Autoignition temperature                                | No data available.                     |
| Decomposition temperature                               | No data available.                     |
| Viscosity/Kinematic Viscosity                           | 10 Pa-s - 100 Pa-s                     |
| Volatile organic compounds (VOC)                        | No data available.                     |
| Percent volatile                                        | No data available.                     |
| VOC less H2O & exempt solvents                          | No data available.                     |

# **SECTION 10: Stability and reactivity**

## 10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

## 10.2 Chemical stability

Stable.

### 10.3. Conditions to avoid

Heat.

## 10.4. Possibility of hazardous reactions

Hazardous polymerisation will not occur.

## 10.5 Incompatible materials

Strong oxidising agents.

## 10.6 Hazardous decomposition products

Substance
None known.

#### Condition

# **SECTION 11: Toxicological information**

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

#### 11.1 Information on Toxicological effects

#### Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

#### Inhalation

This product may have a characteristic odour; however, no adverse health effects are anticipated.

#### Skin contact

Contact with the skin during product use is not expected to result in significant irritation. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

#### Eye contact

Contact with the eyes during product use is not expected to result in significant irritation.

#### Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

#### **Additional Health Effects:**

#### Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

#### Carcinogenicity:

Exposures needed to cause the following health effect(s) are not expected during normal, intended use:

Contains a chemical or chemicals which can cause cancer.

#### **Toxicological Data**

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

#### **Acute Toxicity**

| Name                     | Route     | Species                | Value                                          |
|--------------------------|-----------|------------------------|------------------------------------------------|
| Overall product          | Ingestion |                        | No data available; calculated ATE >5,000 mg/kg |
| Ytterbium (III) fluoride | Dermal    | Professional judgement | LD50 estimated to be > 5,000 mg/kg             |
| Ytterbium (III) fluoride | Ingestion | Rat                    | LD50 > 5,000  mg/kg                            |
| Diurethanedimethacrylate | Dermal    | Professional judgement | LD50 estimated to be > 5,000 mg/kg             |
| Diurethanedimethacrylate | Ingestion | Rat                    | LD50 > 5,000 mg/kg                             |

| Glass powder (65997-17-3), surface modified with 2-propenoic acid, 2 methyl3-(trimethoxysilyl)propyl ester (2530-85-0) and phenyltrimethoxy silane (2996-92-1), bulk material | Dermal                         |                        | LD50 estimated to be > 5,000 mg/kg       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|------------------------------------------|
| Glass powder (65997-17-3), surface modified with 2-propenoic acid, 2 methyl3-(trimethoxysilyl)propyl ester (2530-85-0) and phenyltrimethoxy silane (2996-92-1), bulk material | Ingestion                      |                        | LD50 estimated to be 2,000 - 5,000 mg/kg |
| Trithylene Glycol Dimethacrylate                                                                                                                                              | Dermal                         | Professional judgement | LD50 estimated to be > 5,000 mg/kg       |
| Trithylene Glycol Dimethacrylate                                                                                                                                              | Ingestion                      | Rat                    | LD50 10,837 mg/kg                        |
| Triphenyl Phosphite                                                                                                                                                           | Dermal                         | Rabbit                 | LD50 > 2,000 mg/kg                       |
| Triphenyl Phosphite                                                                                                                                                           | Inhalation-Dust/Mist (4 hours) | Rat                    | LC50 > 1.7 mg/l                          |
| Triphenyl Phosphite                                                                                                                                                           | Ingestion                      | Rat                    | LD50 1,590 mg/kg                         |
| Titanium dioxide                                                                                                                                                              | Dermal                         | Rabbit                 | LD50 > 10,000 mg/kg                      |
| Titanium dioxide                                                                                                                                                              | Inhalation-Dust/Mist (4 hours) | Rat                    | LC50 > 6.82 mg/l                         |
| Titanium dioxide                                                                                                                                                              | Ingestion                      | Rat                    | LD50 > 10,000 mg/kg                      |
| 2-hydroxyethyl methacrylate                                                                                                                                                   | Dermal                         | Rabbit                 | LD50 > 5,000 mg/kg                       |
| 2-hydroxyethyl methacrylate                                                                                                                                                   | Ingestion                      | Rat                    | LD50 5,564 mg/kg                         |
| Ethyl 4-dimethylaminobenzoate                                                                                                                                                 | Dermal                         | Rat                    | LD50 > 2,000 mg/kg                       |
| Ethyl 4-dimethylaminobenzoate                                                                                                                                                 | Ingestion                      | Rat                    | LD50 > 2,000 mg/kg                       |

ATE = acute toxicity estimate

## **Skin Corrosion/Irritation**

| Name                                               | Species                | Value                     |
|----------------------------------------------------|------------------------|---------------------------|
|                                                    |                        |                           |
| Glass powder (65997-17-3), surface modified with   | Professional judgement | No significant irritation |
| 2-propenoic acid, 2 methyl3-                       |                        |                           |
| (trimethoxysilyl)propyl ester (2530-85-0) and      |                        |                           |
| phenyltrimethoxy silane (2996-92-1), bulk material |                        |                           |
| Trithylene Glycol Dimethacrylate                   | Guinea pig             | Mild irritant             |
| Triphenyl Phosphite                                | Rabbit                 | Irritant                  |
| Titanium dioxide                                   | Rabbit                 | No significant irritation |
| 2-hydroxyethyl methacrylate                        | Rabbit                 | Minimal irritation        |
| Ethyl 4-dimethylaminobenzoate                      | Rabbit                 | No significant irritation |

**Serious Eye Damage/Irritation** 

| Name                                                                                                                                                                           | Species                | Value                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|
| Ytterbium (III) fluoride                                                                                                                                                       | Professional judgement | Mild irritant             |
| Glass powder (65997-17-3), surface modified with 2-propenoic acid, 2 methyl3- (trimethoxysilyl)propyl ester (2530-85-0) and phenyltrimethoxy silane (2996-92-1), bulk material | Professional judgement | No significant irritation |
| Trithylene Glycol Dimethacrylate                                                                                                                                               | Professional judgement | Moderate irritant         |
| Triphenyl Phosphite                                                                                                                                                            | Rabbit                 | Moderate irritant         |
| Titanium dioxide                                                                                                                                                               | Rabbit                 | No significant irritation |
| 2-hydroxyethyl methacrylate                                                                                                                                                    | Rabbit                 | Moderate irritant         |
| Ethyl 4-dimethylaminobenzoate                                                                                                                                                  | Rabbit                 | No significant irritation |

## **Skin Sensitisation**

| Sim Sendidation |         |       |  |  |  |  |  |  |
|-----------------|---------|-------|--|--|--|--|--|--|
| Name            | Species | Value |  |  |  |  |  |  |
|                 |         |       |  |  |  |  |  |  |

| Diurethanedimethacrylate         | Guinea pig       | Sensitising    |
|----------------------------------|------------------|----------------|
| Trithylene Glycol Dimethacrylate | Human and animal | Sensitising    |
| Triphenyl Phosphite              | Mouse            | Sensitising    |
| Titanium dioxide                 | Human and animal | Not classified |
| 2-hydroxyethyl methacrylate      | Human and animal | Sensitising    |
| Ethyl 4-dimethylaminobenzoate    |                  | Not classified |

## **Respiratory Sensitisation**

For the component/components, either no data are currently available or the data are not sufficient for classification.

**Germ Cell Mutagenicity** 

| Name                             | Route    | Value                                                                        |
|----------------------------------|----------|------------------------------------------------------------------------------|
| Trithylene Glycol Dimethacrylate | In Vitro | Some positive data exist, but the data are not sufficient for classification |
| Titanium dioxide                 | In Vitro | Not mutagenic                                                                |
| Titanium dioxide                 | In vivo  | Not mutagenic                                                                |
| 2-hydroxyethyl methacrylate      | In vivo  | Not mutagenic                                                                |
| 2-hydroxyethyl methacrylate      | In Vitro | Some positive data exist, but the data are not sufficient for classification |
| Ethyl 4-dimethylaminobenzoate    | In vivo  | Not mutagenic                                                                |
| Ethyl 4-dimethylaminobenzoate    | In Vitro | Some positive data exist, but the data are not sufficient for classification |

Carcinogenicity

| Name                             | Route      | Species         | Value            |
|----------------------------------|------------|-----------------|------------------|
| Trithylene Glycol Dimethacrylate | Dermal     | Mouse           | Not carcinogenic |
| Titanium dioxide                 | Ingestion  | Multiple animal | Not carcinogenic |
|                                  |            | species         |                  |
| Titanium dioxide                 | Inhalation | Rat             | Carcinogenic.    |

## Reproductive Toxicity

Reproductive and/or Developmental Effects

| Name                              | Route     | Value               | Species | Test result | <b>Exposure Duration</b> |
|-----------------------------------|-----------|---------------------|---------|-------------|--------------------------|
| Trithylene Glycol Ingestion Not c |           | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| Dimethacrylate                    |           | female reproduction |         | mg/kg/day   |                          |
| Trithylene Glycol                 | Ingestion | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| Dimethacrylate                    |           | male reproduction   |         | mg/kg/day   |                          |
| Trithylene Glycol                 | Ingestion | Not classified for  | Mouse   | NOAEL 1     | 1 generation             |
| Dimethacrylate                    |           | development         |         | mg/kg/day   |                          |
| 2-hydroxyethyl                    | Ingestion | Not classified for  | Rat     | NOAEL       | premating & during       |
| methacrylate                      |           | female reproduction |         | 1,000       | gestation                |
|                                   |           |                     |         | mg/kg/day   |                          |
| 2-hydroxyethyl                    | Ingestion | Not classified for  | Rat     | NOAEL       | 49 days                  |
| methacrylate                      |           | male reproduction   |         | 1,000       |                          |
|                                   |           |                     |         | mg/kg/day   |                          |
| 2-hydroxyethyl                    | Ingestion | Not classified for  | Rat     | NOAEL       | premating & during       |
| methacrylate                      |           | development         |         | 1,000       | gestation                |
|                                   |           |                     |         | mg/kg/day   |                          |
| Ethyl 4-                          | Ingestion | Not classified for  | Rat     | NOAEL 600   | premating into           |
| dimethylaminobenzo                |           | female reproduction |         | mg/kg/day   | lactation                |
| ate                               |           |                     |         |             |                          |
| Ethyl 4-                          | Ingestion | Not classified for  | Rat     | NOAEL 50    | premating into           |
| dimethylaminobenzo                |           | development         |         | mg/kg/day   | lactation                |
| ate                               |           |                     |         |             |                          |
| Ethyl 4-                          | Ingestion | Toxic to male       | Rat     | NOAEL 50    | 53 days                  |
| dimethylaminobenzo                |           | reproduction        |         | mg/kg/day   |                          |

\_\_\_\_\_

## 3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Catalyst Paste

| oto |  |  |  |
|-----|--|--|--|
| ate |  |  |  |
|     |  |  |  |

## Target Organ(s)

## Specific Target Organ Toxicity - single exposure

For the component/components, either no data are currently available or the data are not sufficient for classification.

Specific Target Organ Toxicity - repeated exposure

| Name                                       | Route      | Target Organ(s)                                                                                                                                                                                              | Value                                                                                    | Species | Test result            | Exposure<br>Duration  |
|--------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|------------------------|-----------------------|
| Trithylene<br>Glycol<br>Dimethacrylat<br>e | Dermal     | kidney and/or<br>bladder   blood                                                                                                                                                                             | Not classified                                                                           | Mouse   | NOAEL 833<br>mg/kg/day | 78 weeks              |
| Triphenyl<br>Phosphite                     | Ingestion  | nervous system                                                                                                                                                                                               | May cause<br>damage to organs<br>though prolonged<br>or repeated<br>exposure             | Rat     | NOAEL 15<br>mg/kg/day  | 28 days               |
| Titanium<br>dioxide                        | Inhalation | respiratory<br>system                                                                                                                                                                                        | Some positive<br>data exist, but the<br>data are not<br>sufficient for<br>classification | Rat     | LOAEL 0.01<br>mg/l     | 2 years               |
| Titanium dioxide                           | Inhalation | pulmonary<br>fibrosis                                                                                                                                                                                        | Not classified                                                                           | Human   | NOAEL Not available    | occupational exposure |
| Ethyl 4-<br>dimethylamin<br>obenzoate      | Ingestion  | hematopoietic<br>system                                                                                                                                                                                      | Some positive<br>data exist, but the<br>data are not<br>sufficient for<br>classification | Rat     | NOAEL 74<br>mg/kg/day  | 28 days               |
| Ethyl 4-<br>dimethylamin<br>obenzoate      | Ingestion  | liver   heart   endocrine system   gastrointestinal tract   bone, teeth, nails, and/or hair   immune system   muscles   nervous system   eyes   kidney and/or bladder   respiratory system   vascular system | Not classified                                                                           | Rat     | NOAEL 900<br>mg/kg/day | 28 days               |

## **Aspiration Hazard**

For the component/components, either no data are currently available or the data are not sufficient for classification.

## **Exposure Levels**

Refer Section 8.1 Control Parameters of this Safety Data Sheet.

#### **Interactive Effects**

Not determined.

# **SECTION 12: Ecological information**

\_\_\_\_\_

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

## 12.1. Toxicity

### Acute aquatic hazard:

GHS Acute 3: Harmful to aquatic life.

## Chronic aquatic hazard:

GHS Chronic 3: Harmful to aquatic life with long lasting effects.

No product test data available.

| Material                 | CAS Number | Organism     | Type             | Exposure | Test endpoint | Test result |
|--------------------------|------------|--------------|------------------|----------|---------------|-------------|
| Diurethanedim            | 72869-86-4 | Green algae  | Endpoint not     | 72 hours | ErC50         | >100 mg/l   |
| ethacrylate              |            |              | reached          |          |               |             |
| Diurethanedim            | 72869-86-4 | Water flea   | Experimental     | 48 hours | EC50          | >100 mg/l   |
| ethacrylate              |            |              |                  |          |               |             |
| Diurethanedim            | 72869-86-4 | Zebra Fish   | Experimental     | 96 hours | LC50          | 10.1 mg/l   |
| ethacrylate              |            |              |                  |          |               |             |
| Diurethanedim            | 72869-86-4 | Green algae  | Endpoint not     | 72 hours | ErC10         | >100 mg/l   |
| ethacrylate              |            |              | reached          |          |               |             |
| Ytterbium (III)          | 13760-80-0 |              | Data not         |          |               | N/A         |
| fluoride                 |            |              | available or     |          |               |             |
|                          |            |              | insufficient for |          |               |             |
|                          |            |              | classification   |          |               |             |
| Glass powder             | None       |              | Data not         |          |               | N/A         |
| (65997-17-3),            |            |              | available or     |          |               |             |
| surface                  |            |              | insufficient for |          |               |             |
| modified with            |            |              | classification   |          |               |             |
| 2-propenoic              |            |              |                  |          |               |             |
| acid, 2                  |            |              |                  |          |               |             |
| methyl3-                 |            |              |                  |          |               |             |
| (trimethoxysily          |            |              |                  |          |               |             |
| l)propyl ester           |            |              |                  |          |               |             |
| (2530-85-0)              |            |              |                  |          |               |             |
| and                      |            |              |                  |          |               |             |
| phenyltrimetho           |            |              |                  |          |               |             |
| xy silane                |            |              |                  |          |               |             |
| (2996-92-1),             |            |              |                  |          |               |             |
| bulk material            | 100.16.0   | C 1          | E ' (1           | 70.1     | ECCO          | > 100 //    |
| Trithylene               | 109-16-0   | Green algae  | Experimental     | 72 hours | EC50          | >100 mg/l   |
| Glycol<br>Dimethacrylate |            |              |                  |          |               |             |
|                          | 100 16 0   | 7.1 First    | F                | 061      | 1.050         | 16.4        |
| Trithylene               | 109-16-0   | Zebra Fish   | Experimental     | 96 hours | LC50          | 16.4 mg/l   |
| Glycol<br>Dimethacrylate |            |              |                  |          |               |             |
|                          | 109-16-0   | Croop algar  | Even a rim antal | 72 hours | NOEC          | 19.6 mg/l   |
| Trithylene<br>Glycol     | 109-10-0   | Green algae  | Experimental     | /2 Hours | INUEC         | 18.6 mg/l   |
| Dimethacrylate           |            |              |                  |          |               |             |
| Trithylene               | 109-16-0   | Water flea   | Experimental     | 21 days  | NOEC          | 32 mg/l     |
| Glycol                   | 109-10-0   | vv ater frea | Experimental     | 21 uays  | INOEC         | 34 IIIg/1   |
| Giyeoi                   | 1          | I            | 1                |          | I             |             |

| Dimethacrylate |              |             |                  |                                         |                  |                  |
|----------------|--------------|-------------|------------------|-----------------------------------------|------------------|------------------|
| Silane,        | 92797-60-9   |             | Data not         |                                         |                  | N/A              |
| trimethoxyocty | 22171 00-7   |             | available or     |                                         |                  | 1 1/2 1          |
| l-, hydrolysis |              |             | insufficient for |                                         |                  |                  |
| products with  |              |             | classification   |                                         |                  |                  |
| silica         |              |             | Classification   |                                         |                  |                  |
| L-Ascorbic     | 2094655-53-3 | Green algae | Estimated        | 72 hours                                | No tox obs at    | >100 mg/l        |
| acid, 6-       |              |             |                  | , = =================================== | lmt of water sol |                  |
| hexadecanoate, |              |             |                  |                                         |                  |                  |
| hydrate (1:2)  |              |             |                  |                                         |                  |                  |
| L-Ascorbic     | 2094655-53-3 | Water flea  | Estimated        | 48 hours                                | No tox obs at    | >100 mg/l        |
| acid, 6-       |              |             |                  |                                         | lmt of water sol |                  |
| hexadecanoate, |              |             |                  |                                         |                  |                  |
| hydrate (1:2)  |              |             |                  |                                         |                  |                  |
| L-Ascorbic     | 2094655-53-3 | Green algae | Estimated        | 72 hours                                | No tox obs at    | 100 mg/l         |
| acid, 6-       |              |             |                  |                                         | lmt of water sol |                  |
| hexadecanoate, |              |             |                  |                                         |                  |                  |
| hydrate (1:2)  |              |             |                  |                                         |                  |                  |
| Titanium       | 13463-67-7   | Activated   | Experimental     | 3 hours                                 | NOEC             | >=1,000 mg/l     |
| dioxide        |              | sludge      | 1                |                                         |                  |                  |
| Titanium       | 13463-67-7   | Diatom      | Experimental     | 72 hours                                | EC50             | >10,000 mg/l     |
| dioxide        |              |             | 1                |                                         |                  |                  |
| Titanium       | 13463-67-7   | Fathead     | Experimental     | 96 hours                                | LC50             | >100 mg/l        |
| dioxide        |              | minnow      | 1                |                                         |                  |                  |
| Titanium       | 13463-67-7   | Water flea  | Experimental     | 48 hours                                | EC50             | >100 mg/l        |
| dioxide        |              |             | 1                |                                         |                  |                  |
| Titanium       | 13463-67-7   | Diatom      | Experimental     | 72 hours                                | NOEC             | 5,600 mg/l       |
| dioxide        |              |             | 1                |                                         |                  | , ,              |
| Triphenyl      | 101-02-0     | Green algae | Experimental     | 72 hours                                | EC50             | >16 mg/l         |
| Phosphite      |              |             | 1                |                                         |                  |                  |
| Triphenyl      | 101-02-0     | Medaka      | Experimental     | 96 hours                                | LC50             | >4.3 mg/l        |
| Phosphite      |              |             | 1                |                                         |                  |                  |
| Triphenyl      | 101-02-0     | Water flea  | Experimental     | 48 hours                                | EC50             | 0.45 mg/l        |
| Phosphite      |              |             | 1                |                                         |                  |                  |
| Triphenyl      | 101-02-0     | Green algae | Experimental     | 72 hours                                | NOEC             | 16 mg/l          |
| Phosphite      |              |             | 1                |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     | Turbot      | Analogous        | 96 hours                                | LC50             | 833 mg/l         |
| methacrylate   |              |             | Compound         |                                         |                  |                  |
|                | 868-77-9     | Fathead     | Experimental     | 96 hours                                | LC50             | 227 mg/l         |
| methacrylate   |              | minnow      | 1                |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     | Green algae | Experimental     | 72 hours                                | EC50             | 710 mg/l         |
| methacrylate   |              |             | 1                |                                         |                  |                  |
|                | 868-77-9     | Water flea  | Experimental     | 48 hours                                | EC50             | 380 mg/l         |
| methacrylate   |              |             | 1                |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     | Green algae | Experimental     | 72 hours                                | NOEC             | 160 mg/l         |
| methacrylate   |              |             | •                |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     | Water flea  | Experimental     | 21 days                                 | NOEC             | 24.1 mg/l        |
| methacrylate   |              |             | 1                |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     |             | Experimental     | 16 hours                                | EC0              | >3,000 mg/l      |
| methacrylate   |              |             |                  |                                         |                  |                  |
| 2-hydroxyethyl | 868-77-9     |             | Experimental     | 18 hours                                | LD50             | <98 mg per kg of |
| methacrylate   |              | 1           | 1                |                                         |                  | bodyweight       |
| Ethyl 4-       | 10287-53-3   | Activated   | Experimental     | 3 hours                                 | EC50             | >1,000 mg/l      |
| dimethylamino  |              | sludge      | 1                |                                         |                  |                  |
|                | L            | -ن          | 1                | 1                                       | 1                | 1                |

| benzoate      |            |               |              |          |       |           |
|---------------|------------|---------------|--------------|----------|-------|-----------|
| Ethyl 4-      | 10287-53-3 | Green algae   | Experimental | 72 hours | EC50  | 2.8 mg/l  |
| dimethylamino |            |               |              |          |       |           |
| benzoate      |            |               |              |          |       |           |
| Ethyl 4-      | 10287-53-3 | Rainbow trout | Experimental | 96 hours | LC50  | 1.9 mg/l  |
| dimethylamino |            |               |              |          |       |           |
| benzoate      |            |               |              |          |       |           |
| Ethyl 4-      | 10287-53-3 | Water flea    | Experimental | 48 hours | EC50  | 4.5 mg/l  |
| dimethylamino |            |               |              |          |       |           |
| benzoate      |            |               |              |          |       |           |
| Ethyl 4-      | 10287-53-3 | Green algae   | Experimental | 72 hours | ErC10 | 0.71 mg/l |
| dimethylamino |            |               |              |          |       |           |
| benzoate      |            |               |              |          |       |           |

# 12.2. Persistence and degradability

| Material                                                                                                                                                                         | CAS Number   | Test type                              | Duration | Study Type    | Test result                                                                     | Protocol                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|----------|---------------|---------------------------------------------------------------------------------|-----------------------------------|
| Diurethanedim ethacrylate                                                                                                                                                        | 72869-86-4   | Experimental<br>Biodegradation         | 28 days  | CO2 evolution | 22 %CO2<br>evolution/THC<br>O2 evolution<br>(does not pass<br>10-day<br>window) | OECD 301B - Modified sturm or CO2 |
| Ytterbium (III) fluoride                                                                                                                                                         | 13760-80-0   | Data not available-insufficient        | N/A      | N/A           | N/A                                                                             | N/A                               |
| Glass powder (65997-17-3), surface modified with 2-propenoic acid, 2 methyl3- (trimethoxysily l)propyl ester (2530-85-0) and phenyltrimetho xy silane (2996-92-1), bulk material | None         | Data not<br>available-<br>insufficient | N/A      | N/A           | N/A                                                                             | N/A                               |
| Trithylene<br>Glycol<br>Dimethacrylate                                                                                                                                           | 109-16-0     | Experimental Biodegradation            | 28 days  | CO2 evolution | 85 % weight                                                                     | OECD 301B - Modified sturm or CO2 |
| Silane,<br>trimethoxyocty<br>l-, hydrolysis<br>products with<br>silica                                                                                                           | 92797-60-9   | Data not<br>available-<br>insufficient | N/A      | N/A           | N/A                                                                             | N/A                               |
| L-Ascorbic<br>acid, 6-<br>hexadecanoate,<br>hydrate (1:2)                                                                                                                        | 2094655-53-3 | Estimated<br>Biodegradation            | 28 days  | CO2 evolution | 93 %CO2<br>evolution/THC<br>O2 evolution                                        | OECD 301B - Modified sturm or CO2 |
| Titanium<br>dioxide                                                                                                                                                              | 13463-67-7   | Data not<br>available-                 | N/A      | N/A           | N/A                                                                             | N/A                               |

|                |            | insufficient   |         |                 |               |                      |
|----------------|------------|----------------|---------|-----------------|---------------|----------------------|
| Triphenyl      | 101-02-0   | Experimental   |         | Hydrolytic      | 0.5 hours (t  | Non-standard method  |
| Phosphite      |            | Hydrolysis     |         | half-life       | 1/2)          |                      |
| Triphenyl      | 101-02-0   | Estimated      | 14 days | BOD             | 85 %BOD/ThB   | OECD 301C - MITI     |
| Phosphite      |            | Biodegradation |         |                 | OD            | test (I)             |
| 2-hydroxyethyl | 868-77-9   | Experimental   |         | Hydrolytic      | 10.9 days (t  | OECD 111 Hydrolysis  |
| methacrylate   |            | Hydrolysis     |         | half-life basic | 1/2)          | func of pH           |
|                |            |                |         | рН              |               |                      |
| 2-hydroxyethyl | 868-77-9   | Experimental   | 28 days | BOD             | 84 %BOD/CO    | OECD 301D - Closed   |
| methacrylate   |            | Biodegradation |         |                 | D             | bottle test          |
| Ethyl 4-       | 10287-53-3 | Experimental   | 28 days | CO2 evolution   | 40 %CO2       | OECD 301B - Modified |
| dimethylamino  |            | Biodegradation |         |                 | evolution/THC | sturm or CO2         |
| benzoate       |            |                |         |                 | O2 evolution  |                      |

# 12.3 : Bioaccumulative potential

| Material                                                                                                                                                                         | CAS Number   | Test type                                                      | Duration | Study Type              | Test result | Protocol                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------|----------|-------------------------|-------------|------------------------------------|
| Diurethanedim ethacrylate                                                                                                                                                        | 72869-86-4   | Experimental Bioconcentrati on                                 |          | Log Kow                 | 3.39        | Non-standard method                |
| Ytterbium (III) fluoride                                                                                                                                                         | 13760-80-0   | Data not<br>available or<br>insufficient for<br>classification | N/A      | N/A                     | N/A         | N/A                                |
| Glass powder (65997-17-3), surface modified with 2-propenoic acid, 2 methyl3- (trimethoxysily l)propyl ester (2530-85-0) and phenyltrimetho xy silane (2996-92-1), bulk material | None         | Data not available or insufficient for classification          | N/A      | N/A                     | N/A         | N/A                                |
| Trithylene<br>Glycol<br>Dimethacrylate                                                                                                                                           | 109-16-0     | Experimental Bioconcentrati on                                 |          | Log Kow                 | 2.3         | Non-standard method                |
| Silane,<br>trimethoxyocty<br>l-, hydrolysis<br>products with<br>silica                                                                                                           | 92797-60-9   | Data not<br>available or<br>insufficient for<br>classification | N/A      | N/A                     | N/A         | N/A                                |
| L-Ascorbic<br>acid, 6-<br>hexadecanoate,<br>hydrate (1:2)                                                                                                                        | 2094655-53-3 | Estimated<br>Bioconcentrati<br>on                              |          | Log Kow                 | >6.5        | Non-standard method                |
| Titanium dioxide                                                                                                                                                                 | 13463-67-7   | Experimental BCF - Carp                                        | 42 days  | Bioaccumulatio n factor |             | Non-standard method                |
| Triphenyl<br>Phosphite                                                                                                                                                           | 101-02-0     | Estimated<br>Bioconcentrati                                    |          | Bioaccumulatio n factor | 13800       | Estimated: Bioconcentration factor |

\_\_\_\_\_\_

|                |            | on             |         |      |                     |
|----------------|------------|----------------|---------|------|---------------------|
| 2-hydroxyethyl | 868-77-9   | Experimental   | Log Kow | 0.42 | OECD 107 log Kow    |
| methacrylate   |            | Bioconcentrati |         |      | shke flsk mtd       |
|                |            | on             |         |      |                     |
| Ethyl 4-       | 10287-53-3 | Experimental   | Log Kow | 3.2  | Non-standard method |
| dimethylamino  |            | Bioconcentrati |         |      |                     |
| benzoate       |            | on             |         |      |                     |

#### 12.4. Mobility in soil

Please contact manufacturer for more details

#### 12.5 Other adverse effects

No information available.

# **SECTION 13: Disposal considerations**

## 13.1. Disposal methods

Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility.

# **SECTION 14: Transport Information**

### Australian Dangerous Goods Code (ADG) - Road/Rail Transport

UN No.: Not applicable.

Proper shipping name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

Hazchem Code: Not applicable

**IERG:** Not applicable.

## International Air Transport Association (IATA) - Air Transport

UN No.: Not applicable.

Proper shipping name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

# International Maritime Dangerous Goods Code (IMDG)- Marine Transport

UN No.: Not applicable.

Proper shipping name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.
Marine Pollutant: Not applicable.

# **SECTION 15: Regulatory information**

## 15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

**Australian Inventory Status:** 

## 3M<sup>TM</sup> RelyX<sup>TM</sup> Universal Resin Cement Catalyst Paste

This product is regulated by the Therapeutics Goods Administration and is exempt from compliance with the Industrial Chemicals (Notification and Assessment) Act 1989 as amended.

# **SECTION 16: Other information**

#### **Revision information:**

Complete document review.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Safety Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Greenguard ® is a United States based program. The 'Low VOC' reference related to United States Federal and State regulations exemptions for some solvents.

3M Australia SDSs are available at www.3m.com.au